libcruft-util/strongdef.hpp

176 lines
7.3 KiB
C++
Raw Normal View History

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2015-2018 Danny Robson <danny@nerdcruft.net>
*/
#ifndef __UTIL_STRONGDEF_HPP
#define __UTIL_STRONGDEF_HPP
#include "cast.hpp"
#include "types/traits.hpp"
#include <limits>
#include <type_traits>
#include <iosfwd>
namespace util {
/// A transparent wrapper around a (typically lightweight) type for the
/// purposes of overload disambiguation. It acts like a typesafe typedef.
template <typename T,typename Tag>
struct strongdef {
public:
using value_type = T;
using tag_type = Tag;
// TODO: ideally we'd default the constructor, but templated
// constructors can't be defaulted? So we just stub one out.
template <typename = std::enable_if_t<std::is_default_constructible_v<T>>>
constexpr explicit strongdef () { ; }
constexpr explicit strongdef (util::types::identity_t<T> const &_data): data (_data) { ; }
constexpr strongdef (strongdef const&) = default;
strongdef& operator= (T const &) = delete;
strongdef& operator= (strongdef const &) = default;
// conversion operators must not be explicit or it defeats the point
// of this class (ease of use, transparency).
explicit operator const T& (void) const& { return data; }
explicit operator T& (void) & { return data; }
constexpr auto operator== (T const &) = delete;
constexpr auto operator== (strongdef const &rhs) const
{
return data == rhs.data;
}
constexpr auto operator!= (T const&) = delete;
constexpr auto operator!= (strongdef const &rhs) const
{
return data != rhs.data;
}
constexpr auto operator< (T const &) const = delete;
constexpr auto operator< (strongdef const &rhs) const { return data < rhs.data; }
constexpr auto operator> (T const &) const = delete;
constexpr auto operator> (strongdef const &rhs) const { return data > rhs.data; }
T data;
};
template <typename ValueT, typename TagT>
std::ostream&
operator<< (std::ostream &os, strongdef<ValueT,TagT> const &val)
{
return os << val.data;
}
}
template <typename ContainerT>
static auto indices (ContainerT const &obj)
{
using index_t = typename ContainerT::index_t;
struct view {
view (ContainerT const &_obj):
m_obj (_obj)
{ ; }
struct iterator {
iterator (index_t _idx):
idx (_idx)
{ ; }
iterator& operator++ ()
{
++idx.data;
return *this;
}
index_t const& operator* () const { return idx; }
index_t const* operator-> () const { return &idx; }
bool operator!= (iterator const &rhs) { return idx != rhs.idx; }
private:
index_t idx;
};
iterator begin (void) const { return iterator (index_t (0)); }
iterator end (void) const
{
return index_t (
util::cast::narrow<
typename index_t::value_type
> (
m_obj.size ()
)
);
}
private:
ContainerT const &m_obj;
};
return view {obj};
}
namespace std {
template <typename T, typename Tag>
struct numeric_limits<util::strongdef<T,Tag>> {
using value_type = typename util::strongdef<T,Tag>::value_type;
static constexpr bool is_specialized = numeric_limits<value_type>::is_specialized;
static constexpr bool is_signed = numeric_limits<value_type>::is_signed;
static constexpr bool is_integer = numeric_limits<value_type>::is_integer;
static constexpr bool is_exact = numeric_limits<value_type>::is_exact;
static constexpr bool has_infinity = numeric_limits<value_type>::has_infinity;
static constexpr bool has_quiet_NaN = numeric_limits<value_type>::has_quiet_NaN;
static constexpr bool has_signaling_NaN = numeric_limits<value_type>::has_signaling_NaN;
static constexpr bool has_denorm = numeric_limits<value_type>::has_denorm;
static constexpr bool has_denorm_loss = numeric_limits<value_type>::has_denorm_loss;
static constexpr std::float_round_style round_style = numeric_limits<value_type>::round_style;
static constexpr bool is_iec559 = numeric_limits<value_type>::is_iec559;
static constexpr bool is_bounded = numeric_limits<value_type>::is_bounded;
static constexpr bool is_modulo = numeric_limits<value_type>::is_modulo;
static constexpr int digits = numeric_limits<value_type>::digits;
static constexpr int digits10 = numeric_limits<value_type>::digits10;
static constexpr int max_digits10 = numeric_limits<value_type>::max_digits10;
static constexpr int radix = numeric_limits<value_type>::radix;
static constexpr int min_exponent = numeric_limits<value_type>::min_exponent;
static constexpr int min_exponent10 = numeric_limits<value_type>::min_exponent10;
static constexpr int max_exponent = numeric_limits<value_type>::max_exponent;
static constexpr int max_exponent10 = numeric_limits<value_type>::max_exponent10;
static constexpr bool traps = numeric_limits<value_type>::traps;
static constexpr bool tinyness_before = numeric_limits<value_type>::tinyness_before;
static constexpr value_type min (void) { return numeric_limits<value_type>::min (); }
static constexpr value_type lowest (void) { return numeric_limits<value_type>::lowest (); }
static constexpr value_type max (void) { return numeric_limits<value_type>::max (); }
static constexpr value_type epsilon (void) { return numeric_limits<value_type>::epsilon (); }
static constexpr value_type round_error (void) { return numeric_limits<value_type>::round_error (); }
static constexpr value_type infinity (void) { return numeric_limits<value_type>::infinity (); }
static constexpr value_type quiet_NaN (void) { return numeric_limits<value_type>::quiet_NaN (); }
static constexpr value_type signaling_NaN (void) { return numeric_limits<value_type>::signaling_NaN (); }
static constexpr value_type denorm_min (void) { return numeric_limits<value_type>::denorm_min (); }
};
}
#endif