libcruft-util/noise/basis.cpp

223 lines
5.7 KiB
C++
Raw Normal View History

/*
* This file is part of libgim.
*
* libgim is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright 2012 Danny Robson <danny@nerdcruft.net>
*/
#include "noise/basis.hpp"
#include "noise/lut.hpp"
2012-05-23 20:31:59 +10:00
#include "../vector.hpp"
2012-05-23 20:31:59 +10:00
#include "../point.hpp"
#include "../random.hpp"
2012-05-23 20:31:59 +10:00
#include <algorithm>
using namespace util::noise;
using util::range;
///////////////////////////////////////////////////////////////////////////////
// Generate a type from [-UNIT..UNIT]
template <typename T>
T
generate (intmax_t x, intmax_t y, basis::seed_t);
template <>
double
generate (intmax_t x, intmax_t y, basis::seed_t seed) {
size_t idx = permute (x, y, seed);
return LUT[idx];
}
template <>
util::vector2
generate (intmax_t x, intmax_t y, basis::seed_t seed) {
auto u = permute (x, y, seed);
auto v = permute (u ^ seed);
return util::vector2 (LUT[u], LUT[v]);
}
///////////////////////////////////////////////////////////////////////////////
basis::basis (seed_t _seed):
seed (_seed)
{ ; }
basis::basis ():
seed (util::random<seed_t> ())
{ ; }
basis::~basis ()
{ ; }
double
basis::eval (double, double) const
{ unreachable (); }
///////////////////////////////////////////////////////////////////////////////
template <lerp_function L>
value<L>::value (seed_t _seed):
basis (_seed)
{ ; }
template <lerp_function L>
value<L>::value ()
{ ; }
template <lerp_function L>
range<double>
value<L>::bounds (void) const
{ return { -1.0, 1.0 }; }
template <lerp_function L>
double
value<L>::eval (double x, double y) const {
2012-05-23 20:31:59 +10:00
intmax_t x_int = static_cast<intmax_t> (x);
intmax_t y_int = static_cast<intmax_t> (y);
double x_fac = x - x_int;
double y_fac = y - y_int;
// Generate the four corner values
double p0 = generate<double> (x_int, y_int, this->seed);
double p1 = generate<double> (x_int + 1, y_int, this->seed);
double p2 = generate<double> (x_int, y_int + 1, this->seed);
double p3 = generate<double> (x_int + 1, y_int + 1, this->seed);
// Interpolate on one dimension, then the other.
return L (L (p0, p1, x_fac),
L (p2, p3, x_fac),
y_fac);
}
template struct value<lerp::linear>;
template struct value<lerp::cubic>;
template struct value<lerp::quintic>;
///////////////////////////////////////////////////////////////////////////////
template <lerp_function L>
gradient<L>::gradient (seed_t _seed):
basis (_seed)
{ ; }
template <lerp_function L>
gradient<L>::gradient ()
{ ; }
template <lerp_function L>
range<double>
gradient<L>::bounds (void) const
{ return { -sqrt(2.0) / 2.0, sqrt (2.0) / 2.0 }; }
template <lerp_function L>
double
gradient<L>::eval (double x, double y) const {
2012-05-23 20:31:59 +10:00
intmax_t x_int = static_cast<intmax_t> (x);
intmax_t y_int = static_cast<intmax_t> (y);
double x_fac = x - x_int;
double y_fac = y - y_int;
// Generate the four corner values. It's not strictly necessary to
// normalise the values, but we get a more consistent and visually
// appealing range of outputs with normalised values.
vector2 p0 = generate<vector2> (x_int, y_int, this->seed).normalise ();
vector2 p1 = generate<vector2> (x_int + 1, y_int, this->seed).normalise ();
vector2 p2 = generate<vector2> (x_int, y_int + 1, this->seed).normalise ();
vector2 p3 = generate<vector2> (x_int + 1, y_int + 1, this->seed).normalise ();
double v0 = p0.x * x_fac + p0.y * y_fac;
double v1 = p1.x * (x_fac - 1.0) + p1.y * y_fac;
double v2 = p2.x * x_fac + p2.y * (y_fac - 1.0);
double v3 = p3.x * (x_fac - 1.0) + p3.y * (y_fac - 1.0);
return L (L (v0, v1, x_fac),
L (v2, v3, x_fac),
y_fac);
}
template struct gradient<lerp::linear>;
template struct gradient<lerp::cubic>;
template struct gradient<lerp::quintic>;
2012-05-23 20:31:59 +10:00
///////////////////////////////////////////////////////////////////////////////
cellular::cellular (seed_t _seed):
basis (_seed)
{ ; }
cellular::cellular ()
{ ; }
range<double>
cellular::bounds (void) const
{ return { 0.0, sqrt(2) }; }
2012-05-23 20:31:59 +10:00
double
cellular::eval (double x, double y) const {
using util::point2;
intmax_t x_int = static_cast<intmax_t> (x);
intmax_t y_int = static_cast<intmax_t> (y);
double x_fac = x - x_int;
double y_fac = y - y_int;
// +---+---+---+
// | 0 | 1 | 2 |
// +---+---+---+
// | 3 | 4 | 5 |
// +---+-------+
// | 6 | 7 | 8 |
// +---+---+---+
point2 centre = { x_fac, y_fac };
double distances[9] = { std::numeric_limits<double>::quiet_NaN () };
double *cursor = distances;
for (signed y_off = -1; y_off <= 1 ; ++y_off)
for (signed x_off = -1; x_off <= 1; ++x_off) {
auto pos = point2 (double (x_off), double (y_off));
auto off = generate<vector2> (x_int + x_off, y_int + y_off, this->seed);
off += 1;
off /= 2;
CHECK (off.x >= 0 && off.x <= 1.0);
CHECK (off.y >= 0 && off.y <= 1.0);
pos += off;
*cursor++ = pos.distance2 (centre);
}
std::sort (std::begin (distances), std::end (distances));
return distances[0];
}