2012-05-23 17:01:30 +10:00
|
|
|
/*
|
|
|
|
* This file is part of libgim.
|
|
|
|
*
|
|
|
|
* libgim is free software: you can redistribute it and/or modify it under the
|
|
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
|
|
* version.
|
|
|
|
*
|
|
|
|
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
|
|
* details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
* Copyright 2012 Danny Robson <danny@nerdcruft.net>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "noise/basis.hpp"
|
|
|
|
#include "noise/lut.hpp"
|
2012-05-23 20:31:59 +10:00
|
|
|
|
2012-05-23 17:01:30 +10:00
|
|
|
#include "../vector.hpp"
|
2012-05-23 20:31:59 +10:00
|
|
|
#include "../point.hpp"
|
2012-05-23 17:01:30 +10:00
|
|
|
#include "../random.hpp"
|
|
|
|
|
2012-05-23 20:31:59 +10:00
|
|
|
#include <algorithm>
|
|
|
|
|
2012-05-23 17:01:30 +10:00
|
|
|
using namespace util::noise;
|
2012-05-24 15:04:06 +10:00
|
|
|
using util::range;
|
2012-05-23 17:01:30 +10:00
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Generate a type from [-UNIT..UNIT]
|
|
|
|
template <typename T>
|
|
|
|
T
|
|
|
|
generate (intmax_t x, intmax_t y, basis::seed_t);
|
|
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
double
|
|
|
|
generate (intmax_t x, intmax_t y, basis::seed_t seed) {
|
|
|
|
size_t idx = permute (x, y, seed);
|
|
|
|
return LUT[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
util::vector2
|
|
|
|
generate (intmax_t x, intmax_t y, basis::seed_t seed) {
|
|
|
|
auto u = permute (x, y, seed);
|
|
|
|
auto v = permute (u ^ seed);
|
|
|
|
|
|
|
|
return util::vector2 (LUT[u], LUT[v]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
basis::basis (seed_t _seed):
|
|
|
|
seed (_seed)
|
|
|
|
{ ; }
|
|
|
|
|
|
|
|
|
|
|
|
basis::basis ():
|
|
|
|
seed (util::random<seed_t> ())
|
|
|
|
{ ; }
|
|
|
|
|
|
|
|
|
|
|
|
basis::~basis ()
|
|
|
|
{ ; }
|
|
|
|
|
|
|
|
|
|
|
|
double
|
|
|
|
basis::eval (double, double) const
|
|
|
|
{ unreachable (); }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <lerp_function L>
|
|
|
|
value<L>::value (seed_t _seed):
|
|
|
|
basis (_seed)
|
|
|
|
{ ; }
|
|
|
|
|
|
|
|
|
|
|
|
template <lerp_function L>
|
2012-05-24 15:04:06 +10:00
|
|
|
value<L>::value ()
|
2012-05-23 17:01:30 +10:00
|
|
|
{ ; }
|
|
|
|
|
|
|
|
|
2012-05-24 15:04:06 +10:00
|
|
|
template <lerp_function L>
|
|
|
|
range<double>
|
|
|
|
value<L>::bounds (void) const
|
|
|
|
{ return { -1.0, 1.0 }; }
|
|
|
|
|
|
|
|
|
2012-05-23 17:01:30 +10:00
|
|
|
template <lerp_function L>
|
|
|
|
double
|
|
|
|
value<L>::eval (double x, double y) const {
|
2012-05-23 20:31:59 +10:00
|
|
|
intmax_t x_int = static_cast<intmax_t> (x);
|
|
|
|
intmax_t y_int = static_cast<intmax_t> (y);
|
2012-05-23 17:01:30 +10:00
|
|
|
double x_fac = x - x_int;
|
|
|
|
double y_fac = y - y_int;
|
|
|
|
|
2012-05-24 17:08:11 +10:00
|
|
|
// Shift the coordinate system down a little to ensure we get unit weights
|
|
|
|
// for the lerp. It's better to do this than abs the fractional portion so
|
|
|
|
// we don't get reflections along the origin.
|
|
|
|
if (x < 0) { x_fac = 1.0 + x_fac; x_int -= 1; }
|
|
|
|
if (y < 0) { y_fac = 1.0 + y_fac; y_int -= 1; }
|
|
|
|
|
2012-05-23 17:01:30 +10:00
|
|
|
// Generate the four corner values
|
|
|
|
double p0 = generate<double> (x_int, y_int, this->seed);
|
|
|
|
double p1 = generate<double> (x_int + 1, y_int, this->seed);
|
|
|
|
double p2 = generate<double> (x_int, y_int + 1, this->seed);
|
|
|
|
double p3 = generate<double> (x_int + 1, y_int + 1, this->seed);
|
|
|
|
|
|
|
|
// Interpolate on one dimension, then the other.
|
|
|
|
return L (L (p0, p1, x_fac),
|
|
|
|
L (p2, p3, x_fac),
|
|
|
|
y_fac);
|
|
|
|
}
|
|
|
|
|
|
|
|
template struct value<lerp::linear>;
|
|
|
|
template struct value<lerp::cubic>;
|
|
|
|
template struct value<lerp::quintic>;
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <lerp_function L>
|
|
|
|
gradient<L>::gradient (seed_t _seed):
|
|
|
|
basis (_seed)
|
|
|
|
{ ; }
|
|
|
|
|
2012-05-24 15:04:06 +10:00
|
|
|
|
2012-05-23 17:01:30 +10:00
|
|
|
template <lerp_function L>
|
|
|
|
gradient<L>::gradient ()
|
|
|
|
{ ; }
|
|
|
|
|
|
|
|
|
2012-05-24 15:04:06 +10:00
|
|
|
template <lerp_function L>
|
|
|
|
range<double>
|
|
|
|
gradient<L>::bounds (void) const
|
|
|
|
{ return { -sqrt(2.0) / 2.0, sqrt (2.0) / 2.0 }; }
|
|
|
|
|
|
|
|
|
2012-05-23 17:01:30 +10:00
|
|
|
template <lerp_function L>
|
|
|
|
double
|
|
|
|
gradient<L>::eval (double x, double y) const {
|
2012-05-23 20:31:59 +10:00
|
|
|
intmax_t x_int = static_cast<intmax_t> (x);
|
|
|
|
intmax_t y_int = static_cast<intmax_t> (y);
|
2012-05-23 17:01:30 +10:00
|
|
|
double x_fac = x - x_int;
|
|
|
|
double y_fac = y - y_int;
|
|
|
|
|
2012-05-24 17:08:11 +10:00
|
|
|
// Shift the coordinate system down a little to ensure we get unit weights
|
|
|
|
// for the lerp. It's better to do this than abs the fractional portion so
|
|
|
|
// we don't get reflections along the origin.
|
|
|
|
if (x < 0) { x_fac = 1.0 + x_fac; x_int -= 1; }
|
|
|
|
if (y < 0) { y_fac = 1.0 + y_fac; y_int -= 1; }
|
|
|
|
|
2012-05-24 15:04:06 +10:00
|
|
|
// Generate the four corner values. It's not strictly necessary to
|
|
|
|
// normalise the values, but we get a more consistent and visually
|
|
|
|
// appealing range of outputs with normalised values.
|
|
|
|
vector2 p0 = generate<vector2> (x_int, y_int, this->seed).normalise ();
|
|
|
|
vector2 p1 = generate<vector2> (x_int + 1, y_int, this->seed).normalise ();
|
|
|
|
vector2 p2 = generate<vector2> (x_int, y_int + 1, this->seed).normalise ();
|
|
|
|
vector2 p3 = generate<vector2> (x_int + 1, y_int + 1, this->seed).normalise ();
|
2012-05-23 17:01:30 +10:00
|
|
|
|
|
|
|
double v0 = p0.x * x_fac + p0.y * y_fac;
|
|
|
|
double v1 = p1.x * (x_fac - 1.0) + p1.y * y_fac;
|
|
|
|
double v2 = p2.x * x_fac + p2.y * (y_fac - 1.0);
|
|
|
|
double v3 = p3.x * (x_fac - 1.0) + p3.y * (y_fac - 1.0);
|
|
|
|
|
|
|
|
return L (L (v0, v1, x_fac),
|
|
|
|
L (v2, v3, x_fac),
|
|
|
|
y_fac);
|
|
|
|
}
|
|
|
|
|
|
|
|
template struct gradient<lerp::linear>;
|
|
|
|
template struct gradient<lerp::cubic>;
|
|
|
|
template struct gradient<lerp::quintic>;
|
|
|
|
|
2012-05-23 20:31:59 +10:00
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
cellular::cellular (seed_t _seed):
|
|
|
|
basis (_seed)
|
|
|
|
{ ; }
|
|
|
|
|
|
|
|
|
|
|
|
cellular::cellular ()
|
|
|
|
{ ; }
|
|
|
|
|
|
|
|
|
2012-05-24 15:04:06 +10:00
|
|
|
range<double>
|
|
|
|
cellular::bounds (void) const
|
2012-05-24 17:08:47 +10:00
|
|
|
{ return { 0.0, 1.5 }; }
|
2012-05-24 15:04:06 +10:00
|
|
|
|
|
|
|
|
2012-05-23 20:31:59 +10:00
|
|
|
double
|
|
|
|
cellular::eval (double x, double y) const {
|
|
|
|
using util::point2;
|
|
|
|
|
|
|
|
intmax_t x_int = static_cast<intmax_t> (x);
|
|
|
|
intmax_t y_int = static_cast<intmax_t> (y);
|
|
|
|
double x_fac = x - x_int;
|
|
|
|
double y_fac = y - y_int;
|
|
|
|
|
2012-05-24 17:08:11 +10:00
|
|
|
// Generate the four corner values. It's not strictly necessary to
|
|
|
|
// normalise the values, but we get a more consistent and visually
|
|
|
|
// appealing range of outputs with normalised values.
|
|
|
|
if (x < 0) { x_fac = 1.0 + x_fac; x_int -= 1; }
|
|
|
|
if (y < 0) { y_fac = 1.0 + y_fac; y_int -= 1; }
|
|
|
|
|
2012-05-23 20:31:59 +10:00
|
|
|
// +---+---+---+
|
|
|
|
// | 0 | 1 | 2 |
|
|
|
|
// +---+---+---+
|
|
|
|
// | 3 | 4 | 5 |
|
|
|
|
// +---+-------+
|
|
|
|
// | 6 | 7 | 8 |
|
|
|
|
// +---+---+---+
|
|
|
|
|
|
|
|
point2 centre = { x_fac, y_fac };
|
|
|
|
double distances[9] = { std::numeric_limits<double>::quiet_NaN () };
|
|
|
|
double *cursor = distances;
|
|
|
|
|
|
|
|
for (signed y_off = -1; y_off <= 1 ; ++y_off)
|
|
|
|
for (signed x_off = -1; x_off <= 1; ++x_off) {
|
|
|
|
auto pos = point2 (double (x_off), double (y_off));
|
|
|
|
auto off = generate<vector2> (x_int + x_off, y_int + y_off, this->seed);
|
|
|
|
off += 1;
|
|
|
|
off /= 2;
|
|
|
|
|
|
|
|
CHECK (off.x >= 0 && off.x <= 1.0);
|
|
|
|
CHECK (off.y >= 0 && off.y <= 1.0);
|
|
|
|
|
|
|
|
pos += off;
|
|
|
|
*cursor++ = pos.distance2 (centre);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::sort (std::begin (distances), std::end (distances));
|
2012-05-24 17:08:47 +10:00
|
|
|
CHECK_SOFT (distances[0] >= 0);
|
|
|
|
CHECK_SOFT (bounds ().contains (distances[0]));
|
2012-05-23 20:31:59 +10:00
|
|
|
return distances[0];
|
|
|
|
}
|